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Abstract - A recent DoD mandate requires that the DoD 
Architectural Framework (DoDAF) be adopted to express 
high level system and operational requirements and 
architectures.  DoDAF is the basis for integrated 
architectures and provides broad levels of specification 
related to operational, system, and technical views. The 
combination of DoDAF Operational views, which capture 
the requirements of the architecture, and System views 
which provide its technical attributes, forms the basis for 
semi-automated construction of the needed simulation 
models. In this paper, we describe an approach to support 
specification of DoDAF architectures within a development 
environment based on DEVS (Discrete Event System 
Specification). The result is an enhanced system lifecycle 
development process that includes both development and 
testing in an integral manner. This paper discusses the 
motivation to carve out a methodology to develop DEVS 
models for any DoDAF-UML architecture specifications 
and empower DoDAF with integrated M&S. 
Keywords: DoDAF, Simulation-based design, DEVS. 
Bifurcated Development Process 

1 Introduction 
  A recent DoD mandate requires that the DoD 
Architectural Framework (DoDAF) be adopted to express 
high level system and operational requirements and 
architectures [1].  DoDAF is the basis for the integrated 
architectures mandated in DOD Instruction 5000.2 [2] and 
provides broad levels of specification related to operational, 
system, and technical views. Integrated architectures are the 
foundation for interoperability in the Joint Capabilities 
Integration and Development System (JCIDS) prescribed in 
CJCSI 3170.01D and further described in CJCSI 6212.01C 
[3,4].   DoDAF and other DoD mandates pose significant 
challenges to the DoD system and operational architecture 
development and testing communities since DoDAF 
specifications must be evaluated to see if they meet 
requirements and objectives, yet they are not expressed in a 
form that is amenable to such evaluation.  However, 
DoDAF-compliant system and operational architectures do 
have the necessary information to construct high-fidelity 
simulations. Such simulations become, in effect, the 
executable architectures referred to in the DODAF 
document.  However, DoDAF has completely overlooked 

the translation of DODAF-compliant architectures into 
models that are of sufficient fidelity to support architectural 
evaluation in capable simulation environments and does not 
dictate any specific M&S technology.  Operational views 
capture the requirements of the architecture being evaluated 
and System views provide its technical attributes. Together 
these views form the basis for semi-automated construction 
of the needed simulation models.   
 
DoDAF is a framework prescribing high level design 
artifacts, but leaves open the form in which the views are 
expressed. A large number of representational languages  
are candidates for such expression. For example, the 
Unified Modeling Language, (UML) and Colored Petri 
Nets (CPN) are widely employed in software development 
and in systems engineering. Each popular representation 
has strengths that support specific kinds of objectives and 
cater to its user community needs. By going to a higher 
level of abstraction, DoDAF seeks to overcome the plethora 
of “stove-piped” design models that have emerged. 
Integration of  such legacy models is necessary for two 
reasons. One is that, as systems, families of systems, and 
systems-of-systems become more broad and heterogeneous 
in their capabilities, the problems of integrating design 
models developed in languages with different syntax and 
semantics has become a serious bottleneck to progress. The 
second is that another recent DoD mandate also intended to 
break down this “stove-piped” culture requires the adoption 
of the Service Oriented Architecture (SOA) paradigm as 
supported in the development of Network Centric 
Enterprise Services  (NCES) [5].  Under DoD direction, 
several contractors have begun to design and implement the 
NCES to support this strategy on Global Information Grid, 
a high-speed, high-capacity data network implemented on 
optical fiber technology. The result is that system 
development and testing must align with this mandate – 
requiring that all systems interoperate in a net-centric 
environment – a goal that can best be done by having the 
design languages be subsumed within a more abstract 
framework that can offer common concepts to relate to. 
However, as stated before, DoDAF does not provide a 
formal algorithmically-enabled process to support such 
integration at a detailed level. 
 



2 DoDAF-to-DEVS mapping 
 We discuss a mapping of DoDAF architectures into a 
computational environment that incorporates dynamical 
systems theory and a modeling and simulation (M&S) 
framework. The methodology will support complex 
information systems specification and evaluation using 
advanced simulation capabilities. Specifically, the Discrete 
Event System Specification (DEVS) formalism will provide 
the basis for the computational environment with the 
systems theory and M&S attributes necessary for design 
modeling and evaluation. 
 
We seek to employ the DoDAF-to-DEVS mapping to unify 
multiple model representations by expressing their high-
level features within DoDAF and their detailed features as 
sub-classes of DEVS specifications.  DEVS has been 
shown to be a universal embedding formalism, in the sense 
of being able to express any sub-class of discrete event 
systems, such as Petri Nets, Cellular Automata, and  
Generalized Markov Chains [6]. DEVS has also been 
employed to express a wide variety of more restricted 
formalisms, such as state machines, workflow systems, 
fuzzy logics, and others [7].  Moreover, DEVS 
environments have a long history of development and are 
now seeing ever increasing use in the simulation-based 
design of commercial and military systems [8]. Providing a 
DoDAF “front end” to a “back end” DEVS environment, 
will appeal to military information system designers facing 
the DoDAF and NCES mandates. Such designers will be 
able to retain their skills with representations familiar to 
them, while complying with DoDAF abstractions. At the 
same time they can see the results of their specifications 
evaluated via simulation-based execution of the model 
architecture. Moreover, since all mappings are into 
subclasses of DEVS, the resulting models can be coupled 
together and therefore can interoperate at the systems 
dynamics level. Thus this approach to the synthesis of 
system design formalisms leverages design and execution 
methodologies that are already used, or mandated for use, 
in commercial and military applications. 
 
DEVS environments, such as DEVSJAVA, DEVS.C++, 
and others [9] are embedded in object-oriented 
implementations, thus supporting the goal of representing 
executable model architectures in an object-oriented 
representational language. As a mathematical formalism, 
DEVS, is platform independent, and its implementations 
adhere to the DEVS protocol so that DEVS models easily 
translate from one form (e.g., C++) to another (e.g., Java) 
[10]  Moreover, DEVS environments, such as DEVSJAVA, 
execute on commercial-off-the-shelf desktops or 
workstations and employ state-of-the-art libraries to 
produce  graphical output that complies with industry and 
international standards. DEVS environments are typically 
open architectures that have been extended to execute on 
various middleware such as DoD’s HLA standard, 
CORBA, SOAP, and others [11,12.13.14]. Therefore, the 

proposed design architecture supports interfaces to other 
engineering and simulation and modeling tools – an 
example of such networking is  provided by Lockheed’s 
satellite cluster mission effectiveness simulator [15].  
Furthermore, DEVS operation over a web-middleware 
(SOAP) enables it to fully participate in the net-centric 
environment of the NCES.  As a result of recent advances, 
DEVS can support model continuity through a simulation-
based development and testing life-cycle [16].    This means 
that the mapping of high-level DoDAF specifications into 
lower-level DEVS formalizations would enable such 
specifications to be thoroughly tested in virtual simulation 
environments before being easily and consistently 
transitions to operate in real environment  for further testing 
and fielding.   
 
3 DEVS System Specifications 
In this section, we review some of the background required  
for discussion DEVS support of DODAF. 
 
3.1 Hierarchy of Systems specifications 
   Systems theory deals with a hierarchy of system 
specifications which defines levels at which a system may 
be known or specified. Table 1 shows this Hierarchy of 
System Specifications (in simplified form, see [3] ). 
 

Level Name What we specify  at this level 
4 Coupled 

Systems 
System built up by several 
component systems which are 
coupled together 

3 I/O System System with state and state 
transitions to generate the 
behavior 

2 I/O 
Function 

Collection of input/output pairs 
constituting the  allowed 
behavior partitioned according 
to the initial state the system is 
in when the input is applied 

1 I/O 
Behavior 

Collection of input/output pairs 
constituting the  allowed 
behavior of the system from an 
external Black Box view 

0 I/O Frame Input and output variables and 
ports together with allowed 
values 

Table 1: Hierarchy of System Specifications 
 

• At level 0 we deal with the input and output 
interface of a system.  

• At level 1 we deal with purely observational 
recordings of the behavior of a system. This is an 
I/O relation which consists of a set of pairs of 
input behaviors and associated output behaviors.  

• At level 2  we have knowledge of the initial state 
when the input is applied. This allows partitioning 
the  input/output pairs of level 1 into non-



overlapping subsets, each subset associated with a 
different starting state. 

• At level 3 the system is described by state space 
and state transition functions. The transition 
function describes the state-to-state transitions 
caused by the inputs and the outputs generated 
thereupon.  

• At level 4 a system is specified by a set of 
components and a coupling structure. The 
components are systems on their own with their 
own state set and state transition functions. A 
coupling structure defines how those interact. A 
property of coupled system which is called 
“closure under coupling” guarantees that a coupled 
system at level 3 itself specifies a system. This 
property allows hierarchical construction of 
systems, i.e., that coupled systems can be used as 
components in larger coupled systems.  

 
As we shall see in a moment, the system 

specification hierarchy provides a mathematical 
underpinning to define a framework for modeling and 
simulation. Each of the entities (e.g., real world, model, 
simulation, and experimental frame) will be described as a 
system known or specified at some level of specification. 
The essence of modeling and simulation lies in establishing 
relations between pairs of system descriptions. These 
relations pertain to the validity of a system description at 
one level of specification relative to another system 
description at a different (higher, lower, or equal) level of 
specification.  
 

Based on the arrangement of system levels as shown 
in Table 1, we distinguish between vertical and horizontal 
relations. A vertical relation is called an association 
mapping and takes a system at one level of specification 
and generates its counterpart at another level of 
specification. The downward motion in the structure-to-
behavior direction, formally represents the process by 
which the behavior of a model is generated. This is relevant 
in simulation and testing when the model generates the 
behavior which then can be compared with the desired 
behavior.   
 

The opposite upward mapping relates a system 
description at a lower level with one at a higher level of 
specification. While the downward association of 
specifications is straightforward, the upward association is 
much less so. This is because in the upward direction 
information is introduced while in the downward direction 
information is reduced. Many structures exhibit the same 
behavior and recovering a unique structure from a given 
behavior is not possible. The upward direction, however, is 
fundamental in the design process where a structure 
(system at level 3) has to be found which is capable to 
generate the desired behavior (system at Level 1). 

3.2 Framework for Modeling & Simulation 
The Framework for M&S as described in [6], 

establishes entities and their relationships that are central to 
the M&S enterprise (see Figure 1).  The entities of the 
framework are source system, experimental frame, model, 
and simulator; they are linked by the modeling and the 
simulation relationships.  Each entity is formally 
characterized as a system at an appropriate level of 
specification within a generic dynamic system. See [6] for 
detailed discussion. 
 

Source 

System

Simulator

Model

Experimental Frame

Simulation

Relation
Modeling

Relation

 
Figure 1.  Framework Entities and Relationships 

 
3.3 Model Continuity 
 Model continuity refers to the ability to transition as 
much as possible of a model specification through the 
stages of a development process. This is opposite to the 
discontinuity problem where artifacts of different design 
stages are disjointed and thus cannot be effectively 
consumed by each other. This discontinuity between the 
artifacts of different design stages is a common deficiency 
of most design methods and results in inherent 
inconsistency among analysis, design, test, and 
implementation artifacts [16]. Model continuity allows 
component models of a distributed real-time system to be 
tested incrementally, and then deployed to a distributed 
environment for execution. It supports a design and test 
process having 4 steps (see [16]), 

1) Conventional simulation to analyze the system 
under test within a model of the environment 
linked by abstract sensor/actuator interfaces.  

2) Real-time simulation, in which simulators are 
replaced by a real-time execution engines while 
leaving the models unchanged.  

3) Hardware-in-the-loop (HIL) simulation in which 
the environment model is simulated by a DEVS 
real-time simulator on one computer while the 
model under test is executed by a DEVS real-time 
execution engine on the real hardware.  

4) Real execution, in which DEVS models interact 
with the real environment through the earlier 
established sensor/actuator interfaces that have 
been appropriately instantiated under DEVS real-
time execution. 

 



Model continuity reduces the occurrence of design 
discrepancies along the development process, thus 
increasing the confidence that the final system realizes the 
specification as desired. Furthermore, it makes the design 
process easier to manage since continuity between models 
of different design stages is retained. 
 
3.4 Department of Defense Architectural 

Framework (DoDAF) 
 The Department of Defense (DoD) Architectural 
Framework (DoDAF), Version 1.0 (2003), defines a 
common approach for DoD architecture description 
development, presentation and integration. The framework 
enables architecture descriptions to be compared and 
related across organizational boundaries, including Joint 
and multinational boundaries.  

  DoDAF is an architecture description and it does not 
define a process to obtain or build the description. The 
Deskbook provides one method for development of IT 
architectures that meet DoDAF requirements, focusing on 
gathering information and building models required to 
conduct design and evaluation of an architecture. The 
DoDAF defines three elements for any architecture 
description. These are: 

1. Operational View (OV) 
2. System Views (SV) 
3. Technical Views (TV) 

These views provide three different perspectives for 
looking at an architecture. The emphasis of DoDAF lies in 
establishing the relationship between these three elements 
ensuring entity relationships and supporting analysis. The 
DoDAF approach is essentially data-centric rather than 
product-centric. The OV, SV and TV are further broken 
down into specialized views whose brief description can be 
seen in column 3 in Table 2 ahead. 

4 Recent Work and Limitations 
According to Zinn [25], the Air Force Chief Architect’s 
office website [38] lists three key impact areas where use of 
architecture’s can provide real benefit: 
1. Operations Enhancement 

1.1 Requirement Coherence and Prioritization 
1.2 Better utilization of fewer personnel 
1.3 Deliberate exploitation of innovation 

2. Programming and Planning 
2.1 IT Investment Decisions (support for POM 

inputs) 
2.2 MIL-Worth Analysis (M&S Executable 

Architectures) 
2.3 AOA Evaluation (Trade Study) 

3. Acquisition support 
3.1 Enhanced warfighter/user capabilities ID 
3.2 Execution Roadmaps 
3.3 Source Selection 

3.4 Technology application/Transition 
3.5 Test Support (MOE/MOP) 
3.6 Interoperability and Integration assurance 

 
Dr. Alexander Levis, the Chief Scientist of Air Force 
acknowledges that M&S can provide an integrated solution 
in evaluation of the designed architectures [28] but there is 
no explicit guidance on how to achieve it. An executable 
architecture (referred to by Levis as an executable model) is 
defined as “use of dynamic simulation software to evaluate 
architecture models” (DoDAF, 2003:7.3). 
 
4.1 Current Problem Areas 
The source for this text is referred largely from Zinn’s 
thesis [25]: 
1. There has been little work done in the area of 

transforming data from an architecture into the 
simulation model The 3rd Order Analysis as 
mentioned in DoDAF doesn’t outline any specific 
achievable tasks in this transformation. 

2. Current modeling techniques in DoD use the age old 
differential equation called “Lanchester Equations” 
technique to calculate causalities and changes in 
frontlines, which as evidence put it, are not accurate. 

3. Colored Petri Nets (CPNs) provide a solution to some 
extent but they fall short in introducing dynamics in 
the model running the simulations. The other 
drawback of using CPNs is that there is no mechanism 
to specify ‘timing’ between the states 

4. Another problem highlighted by agent based 
softwares like SEAS is of the absence of any 
definiteness of interface specifications that could 
enable data porting from architecture to the model. 

 
DEVS technology proposes solutions to these problem 
areas in the rest of the paper. 
 
5 Bifurcated Model-Continuity-based 

Development Process 
 Combining the systems theory, M&S framework, and 
model-continuity concepts leads naturally to a formulation 
of a Bifurcated Model-Continuity-based Life-cycle Process 
for developing and testing military and other software-
intensive systems.  As illustrated in Figure 2, the process 
bifurcates into two streams – system development and test 
suite development – that converge in the system testing 
phase. The proposed research will seek to support this 
development process with the DoDAF-to-DEVS mapping 
and evaluation environment.  The Process has the following 
characteristics: 

DoDAF Specifications:  As described in greater detail 
below, DoDAF descriptions in the operational, system, and 
technical views are created by designers. Although initially 
ill-formulated, as the process proceeds, iterative 
development allows refinement of the requirements and 



increasingly rigorous formulation resulting from the 
formalization and subsequent phases. 
 
Formalization by Mapping into DEVS:  Concurrently 
with the formulation or capture of DoDAF specifications, 
they are formalized as DEVS model components that are 
coupled together to form an overall Reference Master 
Model. 
 
Reference Master Model: The master DEVS model serves 
as a reference model for any implementation of the 
behavior requirements. This model can be analyzed and 
simulated with the DEVS simulation protocol  to study 
logical and performance attributes.  Using model 
continuity, it can be executed with the DEVS real-time 
execution protocol and provides a proof-of-concept 
prototype for an operational system.  
 

 

Figure 2: The Bifurcated Model-Continuity-based life-
cycle process 

 
Semi-automated test suite design: Branching in the lower 
path from the formalized specification, we can develop a 
test suite consisting of experimental frames called  test 
models that can interact with a System Under Test (SUT) to 
test its behavior relative to the specified requirements.  .  
 
Simulation based testing: The test suite is implemented in 
a Net-centric simulation infrastructure and executed against 
the SUT.  The test suite provides explicit 
pass/fail/unresolved results with leads as to components/ 
that might be sources of failure.  
 
Optimization and Fielded execution: The reference 
model provides a basis for correct implementation of the 
requirements in a wide variety of technologies. The test 
suite provides a basis for testing such implementations in a 
suitable test infrastructure.   Test tools should carry into the 
fielding and operational tests of the system, and provide 
operationally realistic test cases and scenarios. 
 
Iterative nature of development: The process is iterative 
allowing return to modify the master DEVS-model and its 

DoDAF precursor requirements specification. Model 
continuity minimizes the artifacts that have to be modified 
as the process proceeds. 

6 DoDAF-to-DEVS and the Bifurcated 
Model-Continuity-based Life-cycle 
Process 
The design methodology provides a process (Figure 3) 

to transform the DoDAF description of an architecture 
DEVS representation supporting evaluation and 
recommendations for a feasible design.  Briefly described 
steps are as follows: 
1. The architecture specifications are presented in 

DoDAF description format as Operational Views, 
System Views and Technical Views using a  
supported design language such as CPN or UML 

2. The system specifications are then mapped to 
DEVS specifications according to the translation 
described in Table 1 that maps the DoDAF views 
to corresponding DEVS elements. The mapping is 
illustrated with UML elements and is expressed in 
XML [20].  

3. Test suites for implementations of the design are 
developed in the test develop stream. 

4. Simulation results and their analysis provide the 
recommendations for a feasible design. 

5. Components are developed from the models using 
Model-continuity principles and the design is 
verified by the Technical View specifications 
developed earlier as a part of DoDAF process. 

 
  Creation of DEVS Model Repository and DEVS Test 
Suite occurs in concurrent manner. DEVS Repository 
serves as a collection of models that are used to develop 
scenarios, experimental frames and conduct other 
simulation oriented analysis. DEVS Test Suite is designed 
to ensure that the required behavior as expressed in  input-
output pairs is correctly implemented when integrated in 
the  system with timing constraints. 
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Figure 3: Bifurcated DEVS-to-DODAF Development 
Process 

 



 Analysis of the Experimental frame simulations and 
the System Test results are compared and evaluated to 
determine departure from required behavior. This error 
margin is called the Conformance Measure. Ideally the 
designed model has a 100% conformance with the Test 
Suite. If the departure exceeds a given tolerance, the model 
is revised to increase the model-test conformance. All this 
assumes that the initial DoDAF specifications have been 
cast in stone. Typically however, the iterative process will 
also suggest new or modified  specifications at the DoDAF 
level. The iterative loops can be seen in Figure 3. 

Finally, when the models conform to the system test 
specifications, the Test Suite presents the design and 
performance recommendations as the outcome of this data-
centric process. The Model Repository serves as the basis 
of design of components based on Model-continuity 
principles and the Test Suite serves as the benchmark for 
performance evaluation and matching the Technical 
specifications as developed in the Technical View DoDAF 
description

DoDAF Elements 
 Name Description UMLElements DEVS Elements 

(generated using XML) 
OV-1 Top-level 

Operational View 
• Use-case 

Diagrams 
• Top level entity structure 

OV-5 Operational Activity 
Model 

• Use-case 
• Activity-

Sequencing 
Diagrams 

• Data-Flow 
Diagrams 

• Input-output pairs  
• Port Identification 

OV-6 Operational Timing 
and Sequencing 
Diagrams 

• Timing-
Sequencing 
Diagrams 

• State-machine 
Diagrams 

• DEVS Atomic Model 
Creation (Initialize 
Function, internal and 
external, transition 
functions, time advance 
and output functions) for 
Activity Components 

• Entity identification 
OV-2 Operational Node 

Connectivity 
• Logical 

Components 
• Coupling Information 
• Hierarchical component 

organization 

DEVS 
Model 
Repository 

OV-3 Operational 
Information Matrix 

 • Input-Output Transaction 
Pairs 

• Message Formats 
OV-7 Logical Data Model • Packages (only 

for xUML) 
• Entity identification 
• Hierarchical Structure 

DEVS 
System-
Test 
Suite 

Operational 
View 

OV-4 Organizational 
Relationship Chart 

 • Entity identification 
• Hierarchical entity 

structure 
SV-4 System Functional 

Description 
• Use-case 

Description 
 

SV-5 System Functional 
Traceability Matrix 
(Based on OV-5) 

 • Coupling Info Refinement 

SV-10 System State 
Description and 
Event Trace (based 
on OV-6) 

 • DEVS atomic model 
transition functions 
refinement 

SV-6 System Data-
Exchange Matrix 

 • Input-Output pair 
refinement 

SV-1 System Interface 
Description (based 
on OV-2) 

 • Port assignment 
Refinement 

• Entity refinement 

System View 

SV-2 System 
Communication 
Description 

• Deployment 
Diagrams 

• Coupling Info Refinement 
(hierarchical 
management) 

DEVS 
Model 
Repository 



SV-7 System Performance 
Parameters Matrix 

  DEVS 
System-
Test 
Suite 

 

SV-3 System-Systems 
Matrix 

 • Hierarchical model 
organization 

• Entity refinement 
TV-1 Current Standards • Timing Response • Basic DEVS model for 

COTS components 
Technical 
View 

TV-2 Future Standards  • Improved DEVS model 
for desired Functionality 

DEVS 
Model 
Repository 

Table 2: DoDAF-DEVS Translation Table 

7 Discussion 
Currently there is a dearth of existing DoDAF examples 

to serve as benchmarks for evaluation of the proposed 
extensions. Since this framework is very much new and still 
in the development phase, getting a realistic DoDAF version 
of any architecture at this juncture proved to be a futile 
exercise. Zinn’s work compiles information (essentially a 
manual task) form OV-6a and OV-5 into a text file that 
could then used for XML parsing for model creation or 
feeding into SEAS. We take off from where Zinn [25] left 

off by giving more structure to the ‘compilation’ process 
and how architecture UML specification can be used 
directly to create DEVS models. 

 
The following table puts the above discussion into more 
perspective. Desired M&S capabilities are taken from the 
AFCAO list mentioned in Section 4. Even though it has 
been realized that M&S is necessary in performing 
evaluation and developing acquisition strategy, there is 
more opportunity for current simulation technology to help.

  
AFACO 

Reference 
Desired M&S 

Capability 
Current working tools 
(Agent-based or CPNs) 

Solutions provided by DEVS 
technology 

1.1 Requirement 
Coherence and 
Prioritization 

No formal methodology exists 
in defining architectures 
wherein the data-model can be 
put directly to use in 
simulation modeling 

The present work aims to 
accomplish this, by injecting 
requirements quite early in the 
design stage of DoDAF 
architectures, specifically in OV 
phase. 

2.2 MIL-Worth Analysis 
(M&S Executable 
Architectures) 

Work is ongoing in this area. 
Due to the limitations of the 
technologies being used, the 
desired ‘execution’ is not 
possible 

3.1 Enhanced 
Warfighter/user 
capabilities 

1. Deterministic CPNs 
2. Stochastic SEAS but too 

rigid to reconfigure on the 
fly 

3. Agent-based methodology 
again falls short in variable 
structure simulation model 

3.2 Execution Roadmaps 
3.3 Source Selection 

No capabilities to control the 
ongoing simulation to steer it 
in the ‘right’ direction 

3.4  Technology 
Application 
/Transition 

No dynamic reconfiguration of 
model and simulation reported. 
The simulation architecture 
itself has to be layered enough 
to accomplish technology 
transition 

3.5 Test Support Agent Based technology, 
essentially Zinn’s work is in 
this direction 
CPNs not capable of 

 
DEVS provide the capability to: 
1. Control simulation on-the-

fly [21] 
2. Reconfigure simulation on-

the-fly [26] 
3. Provide dynamic variable-

structure component 
modeling [22][26] 

4. Separate model from the act 
of simulation itself which 
can be executed on single 
or multiple platforms using 
DEVS/HLA [6] 

5. Simulation Architecture is 
layered to accomplish the 
technology migration or run 
different technological 
scenarios [10][23] 

6. With its Bi-furcated process 
automated test generation is 
integral to this methodology 
[27] 



Automated test generation 
3.6 Interoperability and 

Integration Assurance 
Limitations of the 
methodology itself. No 
mechanisms reported so far 

 

Table 3: Comparison of current technologies in development with DEVS on addressing M&S issues in AFACO 
 
8 Conclusions 
     Under a DoD mandate, DoDAF specifications will 
become the basis for all information system design in the 
near future. Although the current DoDAF specification 
provides an extensive methodology for system 
architectural development, it is deficient in several related 
dimensions – absence of integrated modeling and 
simulation support, especially for model-continuity 
throughout the development process, and lack of associated 
testing support. To overcome these deficiencies, we 
described an approach to support specification of DoDAF 
architectures within a development environment based on 
DEVS-based modeling and simulation. The result is an 
enhanced system lifecycle development process that 
includes model-continuity based development and testing 
in an integral manner. 

The present work is to be extended towards development 
of a complete methodology to transform any DoDAF-
UML specification to its corresponding DEVS model. The 
future work will consist of detailed analysis of DoDAF 
Operational Views and integrated M&S based on idea 
presented in this paper.  
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