
Enhancing DoDAF with a DEVS-Based System Lifecycle
Development Process

Bernard P. Zeigler

Arizona Center of Modeling & Simulation
ECE Department

University of Arizona, Tucson
zeigler@ece.arizona.edu

Saurabh Mittal
Arizona Center for Modeling & Simulation

ECE Department
University of Arizona, Tucson.

saurabh@ece.arizona.edu

Abstract - A recent DoD mandate requires that the DoD
Architectural Framework (DoDAF) be adopted to express
high level system and operational requirements and
architectures. DoDAF is the basis for integrated
architectures and provides broad levels of specification
related to operational, system, and technical views. The
combination of DoDAF Operational views, which capture
the requirements of the architecture, and System views
which provide its technical attributes, forms the basis for
semi-automated construction of the needed simulation
models. In this paper, we describe an approach to support
specification of DoDAF architectures within a development
environment based on DEVS (Discrete Event System
Specification). The result is an enhanced system lifecycle
development process that includes both development and
testing in an integral manner. This paper discusses the
motivation to carve out a methodology to develop DEVS
models for any DoDAF-UML architecture specifications
and empower DoDAF with integrated M&S.
Keywords: DoDAF, Simulation-based design, DEVS.
Bifurcated Development Process

1 Introduction
 A recent DoD mandate requires that the DoD
Architectural Framework (DoDAF) be adopted to express
high level system and operational requirements and
architectures [1]. DoDAF is the basis for the integrated
architectures mandated in DOD Instruction 5000.2 [2] and
provides broad levels of specification related to operational,
system, and technical views. Integrated architectures are the
foundation for interoperability in the Joint Capabilities
Integration and Development System (JCIDS) prescribed in
CJCSI 3170.01D and further described in CJCSI 6212.01C
[3,4]. DoDAF and other DoD mandates pose significant
challenges to the DoD system and operational architecture
development and testing communities since DoDAF
specifications must be evaluated to see if they meet
requirements and objectives, yet they are not expressed in a
form that is amenable to such evaluation. However,
DoDAF-compliant system and operational architectures do
have the necessary information to construct high-fidelity
simulations. Such simulations become, in effect, the
executable architectures referred to in the DODAF
document. However, DoDAF has completely overlooked

the translation of DODAF-compliant architectures into
models that are of sufficient fidelity to support architectural
evaluation in capable simulation environments and does not
dictate any specific M&S technology. Operational views
capture the requirements of the architecture being evaluated
and System views provide its technical attributes. Together
these views form the basis for semi-automated construction
of the needed simulation models.

DoDAF is a framework prescribing high level design
artifacts, but leaves open the form in which the views are
expressed. A large number of representational languages
are candidates for such expression. For example, the
Unified Modeling Language, (UML) and Colored Petri
Nets (CPN) are widely employed in software development
and in systems engineering. Each popular representation
has strengths that support specific kinds of objectives and
cater to its user community needs. By going to a higher
level of abstraction, DoDAF seeks to overcome the plethora
of “stove-piped” design models that have emerged.
Integration of such legacy models is necessary for two
reasons. One is that, as systems, families of systems, and
systems-of-systems become more broad and heterogeneous
in their capabilities, the problems of integrating design
models developed in languages with different syntax and
semantics has become a serious bottleneck to progress. The
second is that another recent DoD mandate also intended to
break down this “stove-piped” culture requires the adoption
of the Service Oriented Architecture (SOA) paradigm as
supported in the development of Network Centric
Enterprise Services (NCES) [5]. Under DoD direction,
several contractors have begun to design and implement the
NCES to support this strategy on Global Information Grid,
a high-speed, high-capacity data network implemented on
optical fiber technology. The result is that system
development and testing must align with this mandate –
requiring that all systems interoperate in a net-centric
environment – a goal that can best be done by having the
design languages be subsumed within a more abstract
framework that can offer common concepts to relate to.
However, as stated before, DoDAF does not provide a
formal algorithmically-enabled process to support such
integration at a detailed level.

2 DoDAF-to-DEVS mapping
 We discuss a mapping of DoDAF architectures into a
computational environment that incorporates dynamical
systems theory and a modeling and simulation (M&S)
framework. The methodology will support complex
information systems specification and evaluation using
advanced simulation capabilities. Specifically, the Discrete
Event System Specification (DEVS) formalism will provide
the basis for the computational environment with the
systems theory and M&S attributes necessary for design
modeling and evaluation.

We seek to employ the DoDAF-to-DEVS mapping to unify
multiple model representations by expressing their high-
level features within DoDAF and their detailed features as
sub-classes of DEVS specifications. DEVS has been
shown to be a universal embedding formalism, in the sense
of being able to express any sub-class of discrete event
systems, such as Petri Nets, Cellular Automata, and
Generalized Markov Chains [6]. DEVS has also been
employed to express a wide variety of more restricted
formalisms, such as state machines, workflow systems,
fuzzy logics, and others [7]. Moreover, DEVS
environments have a long history of development and are
now seeing ever increasing use in the simulation-based
design of commercial and military systems [8]. Providing a
DoDAF “front end” to a “back end” DEVS environment,
will appeal to military information system designers facing
the DoDAF and NCES mandates. Such designers will be
able to retain their skills with representations familiar to
them, while complying with DoDAF abstractions. At the
same time they can see the results of their specifications
evaluated via simulation-based execution of the model
architecture. Moreover, since all mappings are into
subclasses of DEVS, the resulting models can be coupled
together and therefore can interoperate at the systems
dynamics level. Thus this approach to the synthesis of
system design formalisms leverages design and execution
methodologies that are already used, or mandated for use,
in commercial and military applications.

DEVS environments, such as DEVSJAVA, DEVS.C++,
and others [9] are embedded in object-oriented
implementations, thus supporting the goal of representing
executable model architectures in an object-oriented
representational language. As a mathematical formalism,
DEVS, is platform independent, and its implementations
adhere to the DEVS protocol so that DEVS models easily
translate from one form (e.g., C++) to another (e.g., Java)
[10] Moreover, DEVS environments, such as DEVSJAVA,
execute on commercial-off-the-shelf desktops or
workstations and employ state-of-the-art libraries to
produce graphical output that complies with industry and
international standards. DEVS environments are typically
open architectures that have been extended to execute on
various middleware such as DoD’s HLA standard,
CORBA, SOAP, and others [11,12.13.14]. Therefore, the

proposed design architecture supports interfaces to other
engineering and simulation and modeling tools – an
example of such networking is provided by Lockheed’s
satellite cluster mission effectiveness simulator [15].
Furthermore, DEVS operation over a web-middleware
(SOAP) enables it to fully participate in the net-centric
environment of the NCES. As a result of recent advances,
DEVS can support model continuity through a simulation-
based development and testing life-cycle [16]. This means
that the mapping of high-level DoDAF specifications into
lower-level DEVS formalizations would enable such
specifications to be thoroughly tested in virtual simulation
environments before being easily and consistently
transitions to operate in real environment for further testing
and fielding.

3 DEVS System Specifications
In this section, we review some of the background required
for discussion DEVS support of DODAF.

3.1 Hierarchy of Systems specifications
 Systems theory deals with a hierarchy of system
specifications which defines levels at which a system may
be known or specified. Table 1 shows this Hierarchy of
System Specifications (in simplified form, see [3]).

Level Name What we specify at this level
4 Coupled

Systems
System built up by several
component systems which are
coupled together

3 I/O System System with state and state
transitions to generate the
behavior

2 I/O
Function

Collection of input/output pairs
constituting the allowed
behavior partitioned according
to the initial state the system is
in when the input is applied

1 I/O
Behavior

Collection of input/output pairs
constituting the allowed
behavior of the system from an
external Black Box view

0 I/O Frame Input and output variables and
ports together with allowed
values

Table 1: Hierarchy of System Specifications

• At level 0 we deal with the input and output
interface of a system.

• At level 1 we deal with purely observational
recordings of the behavior of a system. This is an
I/O relation which consists of a set of pairs of
input behaviors and associated output behaviors.

• At level 2 we have knowledge of the initial state
when the input is applied. This allows partitioning
the input/output pairs of level 1 into non-

overlapping subsets, each subset associated with a
different starting state.

• At level 3 the system is described by state space
and state transition functions. The transition
function describes the state-to-state transitions
caused by the inputs and the outputs generated
thereupon.

• At level 4 a system is specified by a set of
components and a coupling structure. The
components are systems on their own with their
own state set and state transition functions. A
coupling structure defines how those interact. A
property of coupled system which is called
“closure under coupling” guarantees that a coupled
system at level 3 itself specifies a system. This
property allows hierarchical construction of
systems, i.e., that coupled systems can be used as
components in larger coupled systems.

As we shall see in a moment, the system

specification hierarchy provides a mathematical
underpinning to define a framework for modeling and
simulation. Each of the entities (e.g., real world, model,
simulation, and experimental frame) will be described as a
system known or specified at some level of specification.
The essence of modeling and simulation lies in establishing
relations between pairs of system descriptions. These
relations pertain to the validity of a system description at
one level of specification relative to another system
description at a different (higher, lower, or equal) level of
specification.

Based on the arrangement of system levels as shown
in Table 1, we distinguish between vertical and horizontal
relations. A vertical relation is called an association
mapping and takes a system at one level of specification
and generates its counterpart at another level of
specification. The downward motion in the structure-to-
behavior direction, formally represents the process by
which the behavior of a model is generated. This is relevant
in simulation and testing when the model generates the
behavior which then can be compared with the desired
behavior.

The opposite upward mapping relates a system
description at a lower level with one at a higher level of
specification. While the downward association of
specifications is straightforward, the upward association is
much less so. This is because in the upward direction
information is introduced while in the downward direction
information is reduced. Many structures exhibit the same
behavior and recovering a unique structure from a given
behavior is not possible. The upward direction, however, is
fundamental in the design process where a structure
(system at level 3) has to be found which is capable to
generate the desired behavior (system at Level 1).

3.2 Framework for Modeling & Simulation
The Framework for M&S as described in [6],

establishes entities and their relationships that are central to
the M&S enterprise (see Figure 1). The entities of the
framework are source system, experimental frame, model,
and simulator; they are linked by the modeling and the
simulation relationships. Each entity is formally
characterized as a system at an appropriate level of
specification within a generic dynamic system. See [6] for
detailed discussion.

Source

System

Simulator

Model

Experimental Frame

Simulation

Relation
Modeling

Relation

Figure 1. Framework Entities and Relationships

3.3 Model Continuity
 Model continuity refers to the ability to transition as
much as possible of a model specification through the
stages of a development process. This is opposite to the
discontinuity problem where artifacts of different design
stages are disjointed and thus cannot be effectively
consumed by each other. This discontinuity between the
artifacts of different design stages is a common deficiency
of most design methods and results in inherent
inconsistency among analysis, design, test, and
implementation artifacts [16]. Model continuity allows
component models of a distributed real-time system to be
tested incrementally, and then deployed to a distributed
environment for execution. It supports a design and test
process having 4 steps (see [16]),

1) Conventional simulation to analyze the system
under test within a model of the environment
linked by abstract sensor/actuator interfaces.

2) Real-time simulation, in which simulators are
replaced by a real-time execution engines while
leaving the models unchanged.

3) Hardware-in-the-loop (HIL) simulation in which
the environment model is simulated by a DEVS
real-time simulator on one computer while the
model under test is executed by a DEVS real-time
execution engine on the real hardware.

4) Real execution, in which DEVS models interact
with the real environment through the earlier
established sensor/actuator interfaces that have
been appropriately instantiated under DEVS real-
time execution.

Model continuity reduces the occurrence of design
discrepancies along the development process, thus
increasing the confidence that the final system realizes the
specification as desired. Furthermore, it makes the design
process easier to manage since continuity between models
of different design stages is retained.

3.4 Department of Defense Architectural

Framework (DoDAF)
 The Department of Defense (DoD) Architectural
Framework (DoDAF), Version 1.0 (2003), defines a
common approach for DoD architecture description
development, presentation and integration. The framework
enables architecture descriptions to be compared and
related across organizational boundaries, including Joint
and multinational boundaries.

 DoDAF is an architecture description and it does not
define a process to obtain or build the description. The
Deskbook provides one method for development of IT
architectures that meet DoDAF requirements, focusing on
gathering information and building models required to
conduct design and evaluation of an architecture. The
DoDAF defines three elements for any architecture
description. These are:

1. Operational View (OV)
2. System Views (SV)
3. Technical Views (TV)

These views provide three different perspectives for
looking at an architecture. The emphasis of DoDAF lies in
establishing the relationship between these three elements
ensuring entity relationships and supporting analysis. The
DoDAF approach is essentially data-centric rather than
product-centric. The OV, SV and TV are further broken
down into specialized views whose brief description can be
seen in column 3 in Table 2 ahead.

4 Recent Work and Limitations
According to Zinn [25], the Air Force Chief Architect’s
office website [38] lists three key impact areas where use of
architecture’s can provide real benefit:
1. Operations Enhancement

1.1 Requirement Coherence and Prioritization
1.2 Better utilization of fewer personnel
1.3 Deliberate exploitation of innovation

2. Programming and Planning
2.1 IT Investment Decisions (support for POM

inputs)
2.2 MIL-Worth Analysis (M&S Executable

Architectures)
2.3 AOA Evaluation (Trade Study)

3. Acquisition support
3.1 Enhanced warfighter/user capabilities ID
3.2 Execution Roadmaps
3.3 Source Selection

3.4 Technology application/Transition
3.5 Test Support (MOE/MOP)
3.6 Interoperability and Integration assurance

Dr. Alexander Levis, the Chief Scientist of Air Force
acknowledges that M&S can provide an integrated solution
in evaluation of the designed architectures [28] but there is
no explicit guidance on how to achieve it. An executable
architecture (referred to by Levis as an executable model) is
defined as “use of dynamic simulation software to evaluate
architecture models” (DoDAF, 2003:7.3).

4.1 Current Problem Areas
The source for this text is referred largely from Zinn’s
thesis [25]:
1. There has been little work done in the area of

transforming data from an architecture into the
simulation model The 3rd Order Analysis as
mentioned in DoDAF doesn’t outline any specific
achievable tasks in this transformation.

2. Current modeling techniques in DoD use the age old
differential equation called “Lanchester Equations”
technique to calculate causalities and changes in
frontlines, which as evidence put it, are not accurate.

3. Colored Petri Nets (CPNs) provide a solution to some
extent but they fall short in introducing dynamics in
the model running the simulations. The other
drawback of using CPNs is that there is no mechanism
to specify ‘timing’ between the states

4. Another problem highlighted by agent based
softwares like SEAS is of the absence of any
definiteness of interface specifications that could
enable data porting from architecture to the model.

DEVS technology proposes solutions to these problem
areas in the rest of the paper.

5 Bifurcated Model-Continuity-based

Development Process
 Combining the systems theory, M&S framework, and
model-continuity concepts leads naturally to a formulation
of a Bifurcated Model-Continuity-based Life-cycle Process
for developing and testing military and other software-
intensive systems. As illustrated in Figure 2, the process
bifurcates into two streams – system development and test
suite development – that converge in the system testing
phase. The proposed research will seek to support this
development process with the DoDAF-to-DEVS mapping
and evaluation environment. The Process has the following
characteristics:

DoDAF Specifications: As described in greater detail
below, DoDAF descriptions in the operational, system, and
technical views are created by designers. Although initially
ill-formulated, as the process proceeds, iterative
development allows refinement of the requirements and

increasingly rigorous formulation resulting from the
formalization and subsequent phases.

Formalization by Mapping into DEVS: Concurrently
with the formulation or capture of DoDAF specifications,
they are formalized as DEVS model components that are
coupled together to form an overall Reference Master
Model.

Reference Master Model: The master DEVS model serves
as a reference model for any implementation of the
behavior requirements. This model can be analyzed and
simulated with the DEVS simulation protocol to study
logical and performance attributes. Using model
continuity, it can be executed with the DEVS real-time
execution protocol and provides a proof-of-concept
prototype for an operational system.

Figure 2: The Bifurcated Model-Continuity-based life-
cycle process

Semi-automated test suite design: Branching in the lower
path from the formalized specification, we can develop a
test suite consisting of experimental frames called test
models that can interact with a System Under Test (SUT) to
test its behavior relative to the specified requirements. .

Simulation based testing: The test suite is implemented in
a Net-centric simulation infrastructure and executed against
the SUT. The test suite provides explicit
pass/fail/unresolved results with leads as to components/
that might be sources of failure.

Optimization and Fielded execution: The reference
model provides a basis for correct implementation of the
requirements in a wide variety of technologies. The test
suite provides a basis for testing such implementations in a
suitable test infrastructure. Test tools should carry into the
fielding and operational tests of the system, and provide
operationally realistic test cases and scenarios.

Iterative nature of development: The process is iterative
allowing return to modify the master DEVS-model and its

DoDAF precursor requirements specification. Model
continuity minimizes the artifacts that have to be modified
as the process proceeds.

6 DoDAF-to-DEVS and the Bifurcated
Model-Continuity-based Life-cycle
Process
The design methodology provides a process (Figure 3)

to transform the DoDAF description of an architecture
DEVS representation supporting evaluation and
recommendations for a feasible design. Briefly described
steps are as follows:
1. The architecture specifications are presented in

DoDAF description format as Operational Views,
System Views and Technical Views using a
supported design language such as CPN or UML

2. The system specifications are then mapped to
DEVS specifications according to the translation
described in Table 1 that maps the DoDAF views
to corresponding DEVS elements. The mapping is
illustrated with UML elements and is expressed in
XML [20].

3. Test suites for implementations of the design are
developed in the test develop stream.

4. Simulation results and their analysis provide the
recommendations for a feasible design.

5. Components are developed from the models using
Model-continuity principles and the design is
verified by the Technical View specifications
developed earlier as a part of DoDAF process.

 Creation of DEVS Model Repository and DEVS Test
Suite occurs in concurrent manner. DEVS Repository
serves as a collection of models that are used to develop
scenarios, experimental frames and conduct other
simulation oriented analysis. DEVS Test Suite is designed
to ensure that the required behavior as expressed in input-
output pairs is correctly implemented when integrated in
the system with timing constraints.

DoDA
F

-
DEVS

Interfac
e Mappin
g

DEV

S Mode

l Repositor

y

DEV

S Syste

m Testin

g Suit

e

Exp. Frame /
System

Simulation

System Test
Results/

Recommendations

!

Accuracy
Measure

/
Performance
Conformance

!

Accuracy
Measure

/
Performance
Conformance

Automated
Procedures

Automated
XML Code
Generation

Automated XML DEVS
Model Generation

(Desired Functionality)

Conformance /
Model Accuracy

Conformance / System Output
Response Behavior

COTS
Specs

XML DEVS
Model Generation

(Basic Functionality) Feedback Loop 1
Model Tuning

Feedback Loop 2
Test Suite Tuning

DoDAF
Specs

(OV, SV, TV)

Model Refinement

I/O Spec
Matrix

DoDA
F

-
DEV
S Interfac

e Mappin
g

DEVS
Model

Repositor

y

DEVS
System
Testing
Suite

Exp. Frame

/ System
Simulation

System

Test Results/
Recommendation

s

!

Accurac

y Measur

e /
Performanc

e Conformanc

e

!

Measure s

of /
Performanc

e Conformanc

e

Automated
Procedures

Automated
XML Code
Generation

Automated XML DEVS
Model Genera tion

(Desired Functionality)

Conformance /
Model Accuracy

Conformance /
System Output

Response Behavior

COTS
Specs

XML DEVS
Model Generation

(Basic Functionality) Feedback Loop 1
Model Tuning

Feedback Loop 2
Test Suite Tuning

DoDAF
Specs

(OV, SV, TV)

Model Refinement

I/O Spec
Matrix

Figure 3: Bifurcated DEVS-to-DODAF Development
Process

 Analysis of the Experimental frame simulations and
the System Test results are compared and evaluated to
determine departure from required behavior. This error
margin is called the Conformance Measure. Ideally the
designed model has a 100% conformance with the Test
Suite. If the departure exceeds a given tolerance, the model
is revised to increase the model-test conformance. All this
assumes that the initial DoDAF specifications have been
cast in stone. Typically however, the iterative process will
also suggest new or modified specifications at the DoDAF
level. The iterative loops can be seen in Figure 3.

Finally, when the models conform to the system test
specifications, the Test Suite presents the design and
performance recommendations as the outcome of this data-
centric process. The Model Repository serves as the basis
of design of components based on Model-continuity
principles and the Test Suite serves as the benchmark for
performance evaluation and matching the Technical
specifications as developed in the Technical View DoDAF
description

DoDAF Elements
 Name Description UMLElements DEVS Elements

(generated using XML)
OV-1 Top-level

Operational View
• Use-case

Diagrams
• Top level entity structure

OV-5 Operational Activity
Model

• Use-case
• Activity-

Sequencing
Diagrams

• Data-Flow
Diagrams

• Input-output pairs
• Port Identification

OV-6 Operational Timing
and Sequencing
Diagrams

• Timing-
Sequencing
Diagrams

• State-machine
Diagrams

• DEVS Atomic Model
Creation (Initialize
Function, internal and
external, transition
functions, time advance
and output functions) for
Activity Components

• Entity identification
OV-2 Operational Node

Connectivity
• Logical

Components
• Coupling Information
• Hierarchical component

organization

DEVS
Model
Repository

OV-3 Operational
Information Matrix

 • Input-Output Transaction
Pairs

• Message Formats
OV-7 Logical Data Model • Packages (only

for xUML)
• Entity identification
• Hierarchical Structure

DEVS
System-
Test
Suite

Operational
View

OV-4 Organizational
Relationship Chart

 • Entity identification
• Hierarchical entity

structure
SV-4 System Functional

Description
• Use-case

Description

SV-5 System Functional
Traceability Matrix
(Based on OV-5)

 • Coupling Info Refinement

SV-10 System State
Description and
Event Trace (based
on OV-6)

 • DEVS atomic model
transition functions
refinement

SV-6 System Data-
Exchange Matrix

 • Input-Output pair
refinement

SV-1 System Interface
Description (based
on OV-2)

 • Port assignment
Refinement

• Entity refinement

System View

SV-2 System
Communication
Description

• Deployment
Diagrams

• Coupling Info Refinement
(hierarchical
management)

DEVS
Model
Repository

SV-7 System Performance
Parameters Matrix

 DEVS
System-
Test
Suite

SV-3 System-Systems
Matrix

 • Hierarchical model
organization

• Entity refinement
TV-1 Current Standards • Timing Response • Basic DEVS model for

COTS components
Technical
View

TV-2 Future Standards • Improved DEVS model
for desired Functionality

DEVS
Model
Repository

Table 2: DoDAF-DEVS Translation Table

7 Discussion
Currently there is a dearth of existing DoDAF examples

to serve as benchmarks for evaluation of the proposed
extensions. Since this framework is very much new and still
in the development phase, getting a realistic DoDAF version
of any architecture at this juncture proved to be a futile
exercise. Zinn’s work compiles information (essentially a
manual task) form OV-6a and OV-5 into a text file that
could then used for XML parsing for model creation or
feeding into SEAS. We take off from where Zinn [25] left

off by giving more structure to the ‘compilation’ process
and how architecture UML specification can be used
directly to create DEVS models.

The following table puts the above discussion into more
perspective. Desired M&S capabilities are taken from the
AFCAO list mentioned in Section 4. Even though it has
been realized that M&S is necessary in performing
evaluation and developing acquisition strategy, there is
more opportunity for current simulation technology to help.

AFACO

Reference
Desired M&S

Capability
Current working tools
(Agent-based or CPNs)

Solutions provided by DEVS
technology

1.1 Requirement
Coherence and
Prioritization

No formal methodology exists
in defining architectures
wherein the data-model can be
put directly to use in
simulation modeling

The present work aims to
accomplish this, by injecting
requirements quite early in the
design stage of DoDAF
architectures, specifically in OV
phase.

2.2 MIL-Worth Analysis
(M&S Executable
Architectures)

Work is ongoing in this area.
Due to the limitations of the
technologies being used, the
desired ‘execution’ is not
possible

3.1 Enhanced
Warfighter/user
capabilities

1. Deterministic CPNs
2. Stochastic SEAS but too

rigid to reconfigure on the
fly

3. Agent-based methodology
again falls short in variable
structure simulation model

3.2 Execution Roadmaps
3.3 Source Selection

No capabilities to control the
ongoing simulation to steer it
in the ‘right’ direction

3.4 Technology
Application
/Transition

No dynamic reconfiguration of
model and simulation reported.
The simulation architecture
itself has to be layered enough
to accomplish technology
transition

3.5 Test Support Agent Based technology,
essentially Zinn’s work is in
this direction
CPNs not capable of

DEVS provide the capability to:
1. Control simulation on-the-

fly [21]
2. Reconfigure simulation on-

the-fly [26]
3. Provide dynamic variable-

structure component
modeling [22][26]

4. Separate model from the act
of simulation itself which
can be executed on single
or multiple platforms using
DEVS/HLA [6]

5. Simulation Architecture is
layered to accomplish the
technology migration or run
different technological
scenarios [10][23]

6. With its Bi-furcated process
automated test generation is
integral to this methodology
[27]

Automated test generation
3.6 Interoperability and

Integration Assurance
Limitations of the
methodology itself. No
mechanisms reported so far

Table 3: Comparison of current technologies in development with DEVS on addressing M&S issues in AFACO

8 Conclusions
 Under a DoD mandate, DoDAF specifications will
become the basis for all information system design in the
near future. Although the current DoDAF specification
provides an extensive methodology for system
architectural development, it is deficient in several related
dimensions – absence of integrated modeling and
simulation support, especially for model-continuity
throughout the development process, and lack of associated
testing support. To overcome these deficiencies, we
described an approach to support specification of DoDAF
architectures within a development environment based on
DEVS-based modeling and simulation. The result is an
enhanced system lifecycle development process that
includes model-continuity based development and testing
in an integral manner.

The present work is to be extended towards development
of a complete methodology to transform any DoDAF-
UML specification to its corresponding DEVS model. The
future work will consist of detailed analysis of DoDAF
Operational Views and integrated M&S based on idea
presented in this paper.

References
[1] DoD Architecture Framework, Software Productivity Consortium,
http://www.software.org/pub/architecture/dodaf.asp, last accessed Jan 9,
2005.
 [2] DOD Instruction 5000.2 “Operation of the Defense Acquisition
System,” 12 May 2003.
[3] Chairman, JCS Instruction 3170.01D “Joint Capabilities Integration
and Development System,” 12 March 2004.
[4] Chairman, JCS Instruction 6212.01C “Interoperability and
Supportability of Information Technology and National Security
Systems,” 20 November 2003
[5] DoD Metadata Registry and Clearinghouse,
 http://diides.ncr.disa.mil/mdregHomePage/mdregHome.portal/, last
accessed Jan 9, 2005
[6] B. P Zeigler, H. Praehofer, T. G. Kim, “Theory of Modeling and
Simulation”, Academic Press, 2000
[7] Discrete Event Modeling and Simulation Technologies: A Tapestry
of Systems and AI-Based Theories and Methodologies Editors: Hessam
S. Sarjoughian , François E. Cellier, Spring-Verlag, NY, 2001.
[8] B. P.Zeigler, DEVS Today: Recent Advances in Discrete Event-
based Information Technology, MASCOTS Conference, 2003
[9] http://www.acims.arizona.edu/SOFTWARE/software.shtml, last
accessed Jan 12, 2005
[10] H. Sarjoughian, B. Zeigler, and S. Hall, “A Layered Modeling and
Simulation Architecture for Agent-Based System Development”,
Proceedings of the IEEE 89 (2); 201-213, 2001
[11] Cho, Y., B.P. Zeigler, H.S. Sarjoughian, Design and
Implementation of Distributed Real-Time DEVS/CORBA, IEEE Sys.
Man. Cyber. Conf., Tucson, Oct. 2001.

[12] KH Kim and WS Kang, “A Web Services-based Distributed
Simulation Architecture for Hierarchical DEVS Models”, AIS
conference Oct. 2004, Jeju, Korea
[13] K. Kim, Y. Seong, T. Kim, and K. Park, "Distributed Simulation
of Hierarchical
DEVS Models: Hierarchical Scheduling Locally and Time Warp
Globally," Transactions of the Society for Computer Simulation
International, vol. 13. no. 3, pp. 135{154, 1996.
[14] K. Kim and W. Kang, "CORBA-based, Multi-threaded
Distributed Simulation of Hierarchical DEVS Models: Transforming
Model Structure into a Non-Hierarchical One," LNCS vol. 3046, pp.
167{176, 2004
[15] Davis K. P. and Anderson A. R. (2003). Improving the
Composability of Department of Defense Models and Simulations,
RAND Technical report (Appendix D).
[16] X. Hu, and B.P. Zeigler, “ Model Continuity in the Design of
Dynamic Distributed Real-Time Systems”, accepted by IEEE
Transactions On Systems, Man And Cybernetics— Part A: Systems And
Humans
[17] Model Driven Architecture (MDA), OMG Document number
ormsc/2001-07-01, 2001
[18] A. Newman, S. M. Shatz, and X. Xie, "An Approach to Object
System Modeling by State-Based Object Petri Nets," Int. Journal of
Circuits, Systems, and Computers, Feb. 1998, Vol. 8, No. 1, pp. 1-20
[19] Bowman, Howard, Derrick, John, Formal methods for distributed
processing: a survey of object-oriented approaches, Cambridge
University Press, 2001
[20] F. Curbera, M. Duftler, R. Khalaf, W. Nagy, N. Mukhi, and S.
Weerawarana, "Unraveling the Web services web: an introduction to
SOAP, WSDL, and UDDI," IEEE Internet Computing, vol. 6, no. 2, pp.
86{93, March-April 2002.
[21] S. Mittal, B. P. Zeigler, “Dynamic Simulation Control with Queue
Visualization”, Summer Computer Simulation Conference SCSC'05,
Philadelphia, July 2005
[22] X. Hu, B. P. Zeigler, S. Mittal, “Dynamic Configuration in DEVS
Component-based Modeling and Simulation”, SIMULATION:
Transactions of the Society of Modeling and Simulation International,
November 2003
[23] S. Mittal, B. P. Zeigler, “Modeling/Simulation Architectures for
Autonomous Computing”, Autonomic Computing Workshop: The
Next Era of Computing, January 2003
[24] B. P. Zeigler, S. Mittal, “Modeling and Simulation of Ultra-large
Networks: Methodology Responds to Challenges”, ULN Workshop,
November. 2001
[25] A. W. Zinn, “The Use of Integrated Architectures to support Agent
Based Simulation: An Initial Investigation”, MS Thesis,
AFIT/GSE/ENY/04-M01, Air Force Institute of Technology (AU),
Wright-Patterson AFB OH, December 2004
[26] S. Mittal, “Dynamic Simulation Reconfiguration and Control in
DEVS-Based Component Models”, Journal of Defense Modeling and
Simulation, submitted 2005.
[27] B. P. Zeigler, D. Fulton, P. Hammonds, J. Nutoro, "Framework for
M&S-Based System Development and Testing in Net-centric
Environment,", to appear in ITEA Journal, November 2005
[28] A. Levis, L. Wagenhals, “ C4ISR Architectures I. Developing a
Process for C4ISR Architecture Design”, System Architectures Lab,
C3I Center, MSN 4D2, Geroge Mason University, July 2000
[29] https://cao.hanscom.af.mil/af-cio.htm

